
I. INTRODUCTION – DEFINITION OF THE GALI

We study the behavior of theGeneralized ALignment Index(GALI ) for
different types ofperiodic orbitsin multi-dimensional dynamical systems.

Considering an2N– dimensional system, we follow the evolution ofk
deviation vectors with2 ≤ k ≤ 2N. Then, theGALI of

orderk, is [1]:

(1)

and corresponds to the volume of the generalized parallelepiped, whose
edges are thek unit deviation vectors vectors (the hat ^ denotes that a

vector is of unit length) andt is the continuous or discrete time.

Behavior of the GALI for chaotic motion and unstable periodic orbits
(UPOs):
GALI k tends exponentially to zero with exponents that involve thevalues
of thefirst k largestLyapunovExponentsσ1,σ2,…,σk:
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II. THE MODELS : 
a. 2 Degree of Freedom (DOF) Hénon-Heiles system b. 3 Degree of Freedom Hamiltonian system

(Hénon-Heiles)

c. N=5 Degree of Freedom Hamiltonian (Fermi-Pasta-Ulam model) d. 2D Hénon Map
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ABSTRACT
We use the Generalized Alignment Index (GALI) to investigate the dynamics of periodic orbits and their neighborhood in several conservative nonlinear dynamical systems. For stable
periodic orbits we show that GALIs tend to zero following particular power laws for Hamiltonian flows, while they fluctuate around non-zero values for symplectic maps. On the other
hand, the GALIs of unstable periodic orbits tend exponentially to zero. Thebehavior of GALIs for orbits close to periodic ones is also studied. Itis shown that, for chaotic orbits in the
vicinity of unstable periodic orbits, which are influenced by the corresponding homoclinic tangle, the GALIs can exhibit a remarkable oscillatory behavior changing their values by
many orders of magnitude. Exploiting the advantages of GALIs we produce phase space portraits, which are clearly depicting the dynamical changes in the neighborhood of periodic
orbits when they undergo a stability change.
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III. GALIs  FOR STABLE PERIODIC ORBITS
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For Hamiltonian flows all GALIsdecay 
linearly to zero  following the laws 

Described in Eq. (4).
of thefirst k largestLyapunovExponentsσ1,σ2,…,σk:

(2)

Behavior of the GALI for regular motion on an s-dimensional torus:
GALI k remains essentiallyconstant when2 ≤ k ≤ s, while it tends to
zero fors < k≤ 2N following a power law[2,3]:

(3)

Behavior of the GALI for stable periodic orbits (SPOs):

(4)
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V. GALIs FOR UNTABLE PERIODIC ORBITS

IV. GALIs  “NEAR” STABLE PERIODIC ORBITS

Different GALIs’ decay as the stable periodic 
orbit is perturbed and  gradually becoming a 

regular orbit lying on a torus that surrounds the 
SPO. The right panel shows the final values of 
the GALI2 for a grid of initial conditions on the 

plane (H,py) for the Hénon-Heiles model, 
around a stable periodic orbit as the energy H 
varies. The brown color corresponds to the 

SPO while the orange to regular orbits having 
larger GALI2  values than the SPO. As H 
increases the periodic orbit changes its 
stability from  stable to unstable and 

eventually the motion becomes chaotic. The 
black color corresponds to this chaotic region.

All GALIsdecay exponentially following 
Eq. (2). In the left panel GALI2 changes its 
exponential decay after some transient time 

(t ~500), when the orbit enters a chaotic region 
of different Lyapunov Exponent values.

Left panel: GALI2 � CONSTANT (not linear decay) for an SPO of the2D Hénon Map.
Using the deviation vectors perpendicular to the Hamiltonian flow instead of the standard
ones theGALIs' behavior coincide with their behavior for maps, e.g. for periodic orbits all
GALIsremain constant in time instead of tending to zero followinga power law.

Large fluctuations ofGALI2 for orbits
that are very close to UPOs. Upper
panels: TheGALI2 values decrease
when the orbit moves away from the
UPO (blue curves show the evolution
of an orbits' coordinate in arbitrary
units) and increase when it
approaches the UPO. This behavior is
clearly seen in the case of the 2D
Hénon Map where we can easily plot
the evolution of the deviation
vectors. In the lower left panel we
show the location of an initial
condition very close to an UPO of
multiplicity 5 (red points). This orbit
follows the stable and the unstable
manifold of the UPO, as it is seen in
the rest lower panels where we also
present the evolution of the deviation
vectors close to points A and B.
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VII. GALIs FOR DEVIATION VECTORS PERPENDICULAR 
TO THE HAMILTONIAN FLOW  

(RELATION BETWEEN FLOWS AND MAPS)

VI. NEIGHBORHOOD OF UNSTABLE PERIODIC ORBITS
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