BEHAVIOR OF THE GALI INDICES FOR PERIODIC ORBITS
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ABSTRACT
We use the Generalized Alignment Index (GALI) to investigate thendmics of periodic orbits and their neighborhood in several conservatiemlinear dynamical systems. For staby
periodic orbits we show that GALIs tend to zero following particular pawaws for Hamiltonian flows, while they fluctuate around non-zercalues for symplectic maps. On the othp
hand, the GALIs of unstable periodic orbits tend exponentially to zero. Tehavior of GALIs for orbits close to periodic ones is also studiedislshown that, for chaotic orbits in th
vicinity of unstable periodic orbits, which are influenced by the cosmonding homoclinic tangle, the GALIs can exhibit a remarkable oscillatdehavior changing their values b
many orders of magnitude. Exploiting the advantages of GALIs we produce phaseespartraits, which are clearly depicting the dynamical changes iretheighborhood of periodi
orbits when they undergo a stability change.
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I. INTRODUCTION — DEFINITION OF THE GALI . THE MODELS :

a. 2 Degree of Freedom (DOF) Hénon-Heiles system

b. 3 Degredoeedom Hamiltonian system

We study the behavior of th@eneralized ALignment IndeXGALLI) for
different types operiodic orbitsin multi-dimensional dynamical systems.
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Considering a2N— dimensional system, we follow the evolution kf
deviation vectors y; witt2 <k < 2N. Then, theGALI of

A AT, c. N=5 Degree of Freedom Hamiltonian (Fermi-Pasta-Ulam moel)
orderk, is [1]:

d. 2D Hénon Map

1¢ N{l 1 Xx'= xcos(27w )+ (y+ x*)sin(Zzrow )
_ v 5 & H=>=) %+ (X = X))+ =(%,, - %)*
GALIk(t)_ Vl(t)/\vz(t)/\"'/\\&(t)ﬂl(l) ‘ 2; ! Jz;'o 20" ! 4 8 y'= -xsin(2zo )+ (y+ x*)sin(2ro
and corresponds to the volume of the generalized paraipedpwhose
edges are thk unit deviation vectors vectors (the hat * denotes that a 1. GALIs FOR STABLE PERIODIC ORBITS
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V. GALIs FOR UNTABLE PERIODIC ORBITS eventually the motion becomes chaotic. The
Behavior of the GALI for stable periodic orbits (SPOs) R black color corresponds to this chaotic regipn.
2DOF HENON HEILES | A
o f2<k<2N = & . .
GALI () ~ s — s o All GALIsdecay exponentially following
k( ) 1 ) @ §; % . §; . Eq. (2). In the left pandbALl, changes its
tZ_N’ if k=2N - el = T exponential decay after some transient tinje
| RN " el R (t~500), when the orbit enters a chaotic redion
oAy 64 LT AL, GALIs of different Lyapunov Exponent values.
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